Cyclic Representations of the Quantum Matrix Algebras

نویسنده

  • HANS PLESNER JAKOBSEN
چکیده

In this paper we give a complete classiication of the minimal cyclic M q (n)-modules and construct them explicitly. Also, we give a complete classiica-tion of the minimal cyclic modules of the so-called Dipper-Donkin quantum matrix algebra as well as of two other natural quantized matrix algebras. In the last part of the paper we relate the results to the De Concini { Procesi conjecture. 1. introduction At present, much progress has been made in the representation theory of quantum groups both in the generic case where the quantum parameter q is not a root of unity and in the special cases where q is a root of unity. In the latter case, a completely new class of representations, cyclic representations, have been constructed and studied by diierent authors (e.g. 1], 6]). The name cyclic actually is a little unfortunate since it does not mean \having a generating vector" but we shall keep the notation since the terminology seems to have become widely accepted. See Deenition 2.1 below for the precise deenition. The cyclic representations of the quantum enveloping algebra U q (g) at a root of unity have been studied by De Concini and Kac 2] for an arbitrary nite dimensional Lie algebra g. Some cyclic representations of U q (sl(n + 1)) were constructed in 6]. In 1], the minimal cyclic representations of U q (g) were constructed explicitly in case g is of type A n , B n , or C n. The quantum matrix algebra M q (n) is an associative algebra over C generated by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

The witness set of coexistence of quantum effects and its preservers

One of unsolved problems in quantum measurement theory is to characterize coexistence of quantum effects. In this paper, applying positive operator matrix theory, we give a mathematical characterization of the witness set of coexistence of quantum effects and obtain a series of properties of coexistence. We also devote to characterizing bijective morphisms on quantum effects leaving the witness...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

QUIVER VARIETIES AND t–ANALOGS OF q–CHARACTERS OF QUANTUM AFFINE ALGEBRAS

Let us consider a specialization of an untwisted quantum affine algebra of type ADE at a nonzero complex number, which may or may not be a root of unity. The Grothendieck ring of its finite dimensional representations has two bases, simple modules and standard modules. We identify entries of the transition matrix with special values of “computable” polynomials, similar to Kazhdan-Lusztig polyno...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007